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An inequality on correlation functions in Heisenberg ferromagnets derived by Yeh is slightly improved,
but shown to be irrelevant to the problem of phase transitions.

NE motivation for the study of various correlation-
function inequalities in Ising ferromagnets' has
been their applicability to the problem of phase transi-
tions. Attempts to extend these results to non-Ising
systems? have not been very successful to date. Recently,
Yeh? has published an upper bound for pair correlations
in Heisenberg ferromagnets with the suggestion that
it might prove useful in discussions of phase transitions.
However, even an improved version (below) of Yeh’s
inequality turns out to be rather trivial in a large
system, and hence of no value in the phase-transition
problem.

Consider a system of spins ¢y, t=1,2, ... N, with a
Hamiltonian H chosen so that it has no negative eigen-
values. This can always be done by adding an (V-
dependent) constant to the Hamiltonian of interest.
The inequalities®
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hold for any normalized wave function . We shall, in
particular, choose ¥’s which are products of the eigen-
states of g4, =1, ... N. The pair correlation function
is given by
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where > p(3-4) is the sum over states in which o0,
=-+1(—1), that is, states for which these spins are
parallel (antiparallel).

Upon noting that (w—1)/(w-1) is monotone increas-
ing for w> —1, we see that the bounds
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may be combined with (2) to yield
(k01 < (R—1)/(R+1), ®)

where
R=2N-1/3" gBWIHIV),
4

Yeh’s somewhat weaker bound is obtained by replacing
(R+1) in (5) by 2 (note that R>1).

To see what happens to R for a large system, consider
r< R defined by
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where G(B8) is —f times the free energy of the system
corresponding to a “boundary” condition o.07,=—1.
It is at least in general true for systems of the usual
sort considered in phase transitions that the free energy
is an extensive quantity. In addition, the aforemen-
tioned boundary condition has a negligible effect on G
for large IV, as is easily shown using procedures devel-
oped in an earlier paper.* [For readers unfamiliar with
the type of argument involved, we consider the slightly
simpler case of a boundary condition oj,=-1. The
partition function with this constraint differs by at
most a factor of 2ef¢ from the partition function in
which all exchange interactions involving the kth spin
have been set equal to zero, which in turn differs by at
most the same factor from the partition function in
which all the exchange interactions have their original
values, but no constraint is placed on o.. The constant e,
defined in Eq. (45) of Ref. 4, is independent of N.
By an obvious extension of this argument, one shows
that the condition o4.01,=—1 adds to G, which is of
order IV, a term which is (at most) of order 1.] Con-
sequently, G(0)—G(B) is (approximately) proportional
to N; thus 7 (and a fortiori R) increases extremely
rapidly, and neither Yeh’s bound (increasing to infinity)
nor the bound in (5) (rapidly approaching 1) is of any
use when NV — o, the interesting limit for the problem
of phase transitions.
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